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Abstract—Randomly imperfect waveguides are considered for use
in long-distance transmission at millimeter and submillimeter wave-
lengths. The steady-state attenuation constant, modal power dis-
tribution, and pulse spreading are calculated from Marcuse’s coupled
power equations. The result shows that a random waveguide can
transmit 3.6 Gbit/s per square root of kilometer with a loss of 1.7
dB/km at 500 GHz.

Mode conversions due to circular bends are considered next.
It is shown that the systematic mode conversion due to bends is not
of prime importance if the random coupling coefficient is much
larger than the systematic one. This may be the most important
feature of random metal waveguides for long-distance transmission
applications.

I. INTRODUCTION

ARIOUS transmission systems are under study for

possible applications in meeting with future tele-
communication demands. The digital radio systems are
promising, below 30 GHz [1]. A guided millimeter-wave
system can offer about 300 000 two-way voice channels
using the 43-87-GHz range [2]. With the advent of the
low-loss optical fibers, optical waveguide systems are con-
sidered to be most promising in the future [37]. In conven-
tional systems, various modulation formats are used to
put information on the waveform, while in certain optical
systems, the information is in the intensity of the wave
(optical carrier intensity modulation).

In this paper, we consider the possibility of using wave-
guides at millimeter and submillimeter wavelengths for
long-distance transmission. Radio systems are unlikely to
operate at these wavelengths because of the heavy rainfall
attenuation. The guided millimeter-wave system can, in
principle, be extended to even higher frequencies. How-
ever, it is difficult to fabricate such waveguides for the
higher frequencies. The tolerance becomes stringent and
waveguide installation will raise yet another problem.
Other configurations such as the @ line [4] and the di-
electric waveguide may have higher losses than the metallic
waveguide. The waveguide considered here is made of
metal and is multimoded as in the guided millimeter-wave
system. However, the modes are randomly coupled in this
guide. This is reminiscent of the multimode optical wave-
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guides [57]. The guide is thus applied to the transmission
of wave intensity. The modal power distribution and the
pulse spreading are important in such waveguides [6],
[77. This paper describes those in the metal waveguides,
using a two-dimensional model.

II. POWER DISTRIBUTION AND PULSE
SPREADING

A. Power Distribution

The power flow in each mode characterizes random
waveguides. Marcuse has developed the theory for ran-
domly imperfect optical waveguides [8]. We apply his
theory to the analysis of the present waveguide. Fig. 1
shows a two-dimensional random waveguide with the ap-
propriate coordinate system. For simplicity, we assume
that the lower plate is perfect while the upper plate is
randomly distorted with a small distortion f(z). The guide
boundaries are thus determined by ¢ = 0 and z = & +
f(2), where a is a mean value. An ensemble average of
f(2) is assumed to be Gaussian, i.e.,

(f()f(z —w)) = ¢*exp [— (w/D)?] (1)

where & and D are the rms deviation and the correlation
distance of the upper plate, respectively, and ( ) denotes
an ensemble average of similar guides.

The coupled power equations have been developed by
Marcuse and they are written as [87], [9]

Y

Fig. 1. A two-dimensional waveguide with a randomly imperfect
wall. The guide is uniform along the y axis. The waves are propa-~
gated down the z axis. The upper plate is determined by =z =
a + f(z), where f(2) is a small distortion function.
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where P, is the power carried by the mode », o, is its at- .

tenuation constant, and

N
b, = Z hwn

=1

(V = 1;27°":N) (3)
h,. represents the power coupling coefficient between the
mode » and u. For simplicity, we consider only the TE
modes. In this case, the attenuation constant is obtained
from Maxwell’s equations as follows:

2
26 <.”l">, (v =102,
B.a\a

where 6 is the skin depth of the metal and 8, is given by

)T

where k is the free-space wavenumber.

The amplitude coupling coefficient is derived from
Schelkunoff’s normal mode theory [107]. The resulting
coupled equations are written in terms of an equivalent
voltage and current. We then rewrite them in the form of
forward- and backward-traveling waves. Neglecting back-
ward waves, the amplitude coupling coefficient is ob-
tained as

yu(— 1)
2 —

(4)

0y, =

(5)

s L4fe)

[(ﬁu/ﬁ YU+ (B, /ﬁu)llzj (6)
In order to evaluate the power coupling coefficient 4,
from (6), it is necessary to calculate an ensemble average
of df (2) /dz. The assumed Gaussian autocorrelation enables
us to calculate it in the closed form. Its derivation is

shown in the Appendix. The result is given by
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<df(2) df(z - u) . 9 [eXp [— (u/D)zil]
= —45D .
a(D?) D
(7

Using (6) and (7), we can write the power coupling co-
efficient in the following form (see Appendix):

vu
o = {
#2__ 2

-%? (B, — Bu)*w! % exp {

)M+ (ﬁ»/ﬁu)”ﬂ}

—D®B, —B)T. (8)

Following Marcuse [117], we can calculate the steady-
state attenuation constants o? and eigenvectors B,
from (2), (4), and (8). The term «® represents the
lowest order attenuation constant of the coupled system.
Hence a sufficiently long waveguide distributes the power
B,® to the mode » (» = 1,2,-++,N), and the coupled
dominant wave is attenuated at the rate of a®.

Fig. 2 shows the normalized attenuation constants «Wa
and «®a as functions of D/a. The solid lines show the
case with N = 40, and the dot—dash line shows the case
with N = 20; the broken lines depict a®a. In this paper
we assume that the metal is silver whose conductivity is
6.139 X 10* mho/mam. It is apparent from (8) that h,,
vanishes when D/a becomes very large or very small, as
in optical waveguides [11]. However, «, is independent
of D/a. Hence each eigenvalue derived from the deter-
minant of the coupled system approaches «, when D/a
becomes very large or very small. The lowest eigenvalue
a® ultimately coincides with ey of (4). Furthermore, a
large ¢/a gives a large eigenvalue. As the mode number
increases, the maxima of eigenvalues move to the points
with small correlation distances. This shows that the
eigenvalue is determined with the correlation distance in
relation to the guide wavelength.

In optical waveguides, «, depends on D/a. For very
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Fig. 2. The first and second eigenvalues ( = 1,2) obtained from
the coupled power equations (2). The first elgenvalue shows the
steady-state attenuation of the coupled system in a sufficiently
long waveguide. The parameters N and &/a are the largest mode
number and the normalized rms deviation, respectively.



KOYAMA AND HASHIMOTO: RANDOMLY IMPERFECT WAVEGUIDES

small D/a, «, is proportional to D/a, and, for very large
D/a, it is proportional to exp { —[3D (8, — k) *} where
ks is the propagation constant in the surrounding medium
of the guide [117]. Thus a, also vanishes when D/a be-
comes very large or very small. This does affect the
power distribution in optical waveguides. For large D/a,
the power tends to distribute evenly among the modes.

The power distribution of random metal waveguides is
different from that of the optical waveguides. Fig. 3
shows the steady-state power distribution for N = 40 as
a function of mode number ». The normalized rms devia-
tion #/a is assumed to be 0.001. Contrary to the optical
waveguides, the most power resides in the dominant
mode even when D/a is very large. One could argue that
the assumed &/a is too small to cause enough mode cou-
pling. However, it is characteristic of random metal
waveguides that several lower order modes carry most
of the power no matter what the correlation distance is
assumed to be. It is indeed verified with Fig. 4, where
&/a is assumed to be 0.01. This gives a large loss penalty
as seen from Fig. 2.
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Fig. 3. The first eigenvector obtained from (2). B,® shows the

power in mode » in a sufficiently long waveguide. The deviation
@/a is assumed to be 0.001.

0 T 1. T

llll\]l!‘l](‘[ T T

e

(dB)

[{}]

Power distribution— By

D/a=0 0
/

-20

Y, .

PR TR RSSO W S S
o 10 2

-
o
&

Mode number— ¥V

Fig. 4. The power distribution as functions of mode number »,
where 7/c s assumed to be 0.01.
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“One question comes to mind though. Marcuse has
shown that if the loss difference between a pair of modes
is larger than the coupling coefficient, the pulsewidth in-
creases with increasing coupling strength [87]. Hence the
mode mixing is useful for reducing the pulse spreading in
the case that the coupling strength is larger than the loss
difference. In metal waveguides, it is also possible to re-
duce the pulse spreading by mode mixing. It has been
shown that «, is independent of D/a while k,, depends
on D/a. Hence we can make h,, either large or small com-
pared to the difference between «, and «, with the suit-
able choice of D/a or &/a. The result on the pulse spread-
ing will be shown later.

Fig. 5 shows how the steady-state power distribution
is attained by changing the guide length. It is shown that
if the normalized length z/a is 10° ~ 10% we get the

steady-state distribution with equal modal power excita-
tion at z = 0.

B. Pulse Spreading

The second-order perturbation solution of (2) enables
us to calculate the pulse spreading. If a sufficiently narrow
pulse is transmitted, its spreading is calculated from [12]

t = 4(a®L)V2 9)

where a® is the second-order eigenvalue of the time-
dependent system. Fig. 6 shows the pulsewidth as a func-
tion of D/a. It is normalized by (a)2 so that the width
at the distance L is obtained from the ordinate value
times (L/a)Y2 The solid lines show the case of N = 40,
and the broken line shows N = 20. For small D/a, the
width is also small because of the small power coupling.
It increases with increasing D/a. This coincides with
Marcuse’s theory for the coupling strength that is smaller
than the loss difference. The width then reaches the max-
imum and decreases with increasing D/a. This also coin-
cides with his theory. This is because, as stated before,
h,. depends on D/a while «, is independent of D/a. This
region thus corresponds to the case in which the coupling
strength is larger than the loss difference. Hence mode
mixing is indeed useful for reducing the pulse spreading
in random metal waveguides. After reaching the minimum
point, the width increases with increasing D/a. This again
shows the region for the coupling strength that is smaller

Power distribution—

Mode number—v

Fig. 5. The power distribution as functions of mode number »,
where the normalized guide length z/a is taken as a parameter.
The solid lines indicate D/a = 0.01 and the broken lines indicate
D/a = 1.0. The rms deviation is 0.001.
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Fig. 6. The normalized second-order solution of the time-dependent
coupled power equations. The pulsewidth at the distance L is
obtained by multiplying the ordinate with (L/a)/%, where a is
the plate separation.

than the loss difference. For very large D/a, the eigen-
value is split into the attenuation constant of each mode.
Therefore, the pulsewidth should decrease with very large
D/a. However, as he claims [8], Marcuse’s theory does
not seem to apply to this case.

We conclude this section after showing an example. We
assume the frequency is 500 GHz and guide width is
12.2 mm. Forty modes propagate in this guide. From
Fig. 2, the steady-state attenuation becomes 1.7 dB/km
with 1.2-mm correlation distance and 12-uym-rms devia-
tion. Since the uncoupled dominant mode has a loss of
0.4 dB/km, the loss penalty is about 1.3 dB/km. Fig. 6
shows that the pulse rate in this case is 3.6 Gbit/s per
square root of kilometer. Hence a few hundred megabits/
second can be transmitted over several kilometers with
small loss penalty. '

III. MODE CONVERSIONS DUE TO CIRCULAR
BENDS

One of the important considerations for metal wave-
guides is mode conversions due to bends. Bends cause
systematic coupling in a well-fabricated waveguide,* and,
in certain cases, they result in complete power exchange
between modes. For example, the TEy, modes in a circular
waveguide are systematically converted to the TMi,
modes in a circular bend. In random waveguides, the
systematic mode conversion is not of prime importance
if the random coupling coefficient is much larger than
the systematic one. This is because the constant buildup
of higher modes is interrupted by the larger random cou-
pling. This is perbaps the most important aspect of the

t The term “‘systematic coupling” is used to distinguish it from
random coupling. Examples are distributed directional couplers and
mode transducers.
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random waveguides. Bends due to route, conduit condi-
tion, ete., are unavoidable in a long transmission line.
Random waveguides may circumvent this difficulty, i.e.,
suffering from a large loss penalty.

Mode conversions due to circular bends are again cal-
culated from the normal mode theory. The random and
systematic coupling coefficients are obtained as

14
Kr = P -_f—(f')” (,Bv + :3#)
a dz
Kg = _jpm;Z (10)

where p,, is a constant and r is a bending radius. Hence, if

1)

1
5, (Bt Bu) | > (11)
2 a

the systematic coupling may be negligibly small. It has
been shown that df(z)/dz can be replaced by j(8, —
B.)f(z), as far as the coupling is concerned [13]. The pre-
ceding equation then yields

& __ 0.0716 [a\?
g>> -

(12)

u2__y2 P

where f(z) was replaced by 2Y2%5. Equation (12) shows
that a minimum bending radius of, say, 1 m is sufficient
to preclude the systematic mode conversion if p # », for
the example given in the previous section. If u = », it is
not possible to choose 3/a that satisfies (12). Therefore,
it is important to introduce in random waveguides some
means that can split the propagation constants of degen-
erate modes.

IV. CONCLUSION

We have considered the feasibilities of metallic wave-
guides with random imperfections. The random imperfec-
tions cause mode conversions among various modes in
random fashion. The power distribution and the attenua-
tion constants of the coupled system are calculated from
the coupled power equations developed by Marcuse. The
pulse spreading is derived from the second-order perturba-
tion solution to the time-dependent coupled system.

In random metal waveguides, we have two regions that
distinguish mode mixing: one is the case where the pulse-
width increases with increasing coupling strength. The
other is the case where the width decreases with increas-
ing coupling strength. We thus have a minimum pulse
spreading in relation to the correlation distance of ran-
dom walls.

The systematic coupling coefficient of circular bends is
calculated and compared to the random coupling coeffi-
cient. Because it is possible to choose the random coupling
coefficient to be much larger than the systematic one,
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bending losses are not of prime importance in the random
waveguides. This is perhaps the most important point of
the random waveguides for long-distance transmission ap-
plications.

APPENDIX

If a random variable f(2) is stationary and ergodic, its
ensemble average is calculated from the following for-
mula [14]:

L/
f@)f(z — u) de.

—Lj2

R(u) = lim L

tm 7 (13)

Using the Fourier transform F (o) of f(2), we can rewrite
(13) as follows:

R(u) = /w 2r Fl) | FI'J(w) ]2 exp (—jeu) dw

where the mathematically difficult limiting process on L
is implied [147]. The inverse transform of (14) yields

2e|Fo) 2 1 f®
___I_E(_)_L - Z/__wR(u) exp (jou) du.  (15)

(14)

If R(u) is given by a Gaussian function (1) in the text,
the power spectrum of R(u) is obtained as

7 | Fw) |2 52D
27 | L( ) | - 2;)1/26}@ [— (3Dw)?].

(16)

Now, based on the assumed random process, we can
write

_ (4@ dfz —w)
Viw = < dz dz >

— Tim fm Y@ de=w 4 47

Lewd_zp 02 dz

Because F(w) is the Fourier transform of f(z), we have

O—l'%('s)' = ./::JwF(w) exp (jwz) dz. (18)
Substitution of (18) into (17) yields
© 0 2| F 2
Viu) = f l—‘i—lz—(f—)—‘— exp (—jou) do.  (19)

From (16) and (19), (6) in the text is derived.
We next show the derivation of (7). The power cou-
pling coefficient is written as

-exp [7(8» — Bu)uldu (20)
where
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l kvu ‘2 = {;{{% [(ﬁv/ﬁu) 12 + (6#/)81') 1/2]} é; . (21)

Using (6) in the text, we can calculate the integral as
follows:

L fexp[—(w/D)]
"‘“D/_wa(m)( D )

~exp [ (8, — Bu)uldu

]
a(D?)

— —45D

{;“) /_: exp [— (u/D)* + (8, — Bu)u] du}

a3
= —452D -
T 8D

= 6’2D7|'112(6y - Bu)zexp {"[%D<6v - ﬁn)]z}‘

[soop- 22 (=[5, = 871

D
(22)
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