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Randomly Imperfect Waveguides for Millimeter and

Submillimeter wavelengths for Long-Distance

Transmission Applications

MASAKI KOYAMA, MEMBER, IEEE, AND KUNIO HASHIMOTO

Ab.sfracf-Randomly imperfect waveguides are considered for use

in long-distance transmission at millimeter and submillimeter wave-
lengths. The steady-state attenuation constant, modal power dis-
tribution, and pulse spreading are calculated from Marcuse’s coupled
power equations. The result shows fiat a random waveguide can
transmit 3.6 Gbit/s per square root of kilometer with a loss of 1.7

dB/km at 500 GHz.

Mode conversions due to circular bends are considered next.
It is shown that the systematic mode conversion due to bends is not

of prime importance if the random coupling coefficient is much
larger than the systematic one. This may be the most important

feature of random metal waveguides for long-distance transmission

applications.

I. INTRODUCTION

VARIOUS transmission systems are under study for

possible applications in meeting with future tele-

communication demands. The digital radio systems are

promising, below 30 GHz [1]. A guided millimeter-wave

system can offer about 300000 two-way voice channels

using the 43–87-GHz range [2]. With the advent of the

low-loss optical fibers, optical waveguide systems are con-

sidered to be most promising in the future [3]. In conven-

tional systems, various modulation formats are used to

put information on the waveform, while in certain optical

systems, the information is in the intensity of the wave

(optical carrier intensity modulation).

In this paper, we consider the possibility of using wave-

guides at millimeter and submillimeter wavelengths for

long-distance transmission. Radio systems are unlikely to

operate at these wavelengths because of the heavy rainfall

attenuation. The guided millimeter-wave system can, in

principle, be extended to even higher frequencies. How-

ever, it is difficult to fabricate such waveguides for the

higher frequencies. The tolerance becomes stringent and

waveguide installation will raise yet another problem.

Other configurations such as the G line [4] and the di-

electric waveguide may have higher losses than the metallic

waveguide, The waveguide considered here is made of

metal and is multimode as in the guided millimeter-wave

system. However, the modes are randomly coupled in this

guide. This is reminiscent of the multimode optical wave-
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guides [5]. The guide is thus applied to the transmission

of wave intensity. The modal power distribution and the

pulse spreading are important in such waveguides [6],

[7]. This paper describes those in the metal waveguides,

using a two-dimensional model.

II. POWER DISTRIBUTION AND PULSE

SPREADING

A, Power Distribution

The power flow in each mode characterizes random

waveguides. Marcuse has developed the theory for ran-

domly imperfect optical waveguides [8]. We apply his

theory to the analysis of the present waveguide. Fig. 1

shows a two-dimensional random waveguide with the ap-

propriate coordinate system. For simplicity, we assume

that the lower plate is perfect while the upper plate is

randomly distorted with a small distortion j(z). The guide

boundaries are thus determined by x = O and x = a +

.f(.e), where a is a mean value. An ensemble average of

j(z) is assumed to be Gaussian, i.e.,

(.f(z).f(z – U)) = 62 f=p [– (tdD)2] (1)

where ; and D are the rms deviation and the correlation

distance of the upper plate, respectively, and ( ) denotes

an ensemble average of similar guides.
The coupled power equations have been developed by

lMarcuse and they are written as [8], [9]
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Fig. 1. A two-dimensional waveguide with a randomly imperfect
wall. The guide is uniform along the y axis. The waves are propa-
gated down the z axis. The upper plate is determined by z =
a + j(z), where f(z) is a small distortion function.
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dP,
– – (a, + b,)P, + f h,gPw

dz
(Y = 1,2, ” “ ‘,N)

p=l

(2)

where P, is the power carried by the mode v, a, is its at-

tenuation constant, and

N

b, = X hw, (v = 1,2, ” “ “,N) (3)
~=1

h,P represents the power coupling coefficient between the

mode v and g. For simplicity, we consider only the TE

modes. In this case, the attenuation constant is obtained

from Maxwell’s equations as follows:

()26 VT 2
(v = 1,2,. “.,N)

“’=EX’
(4)

where 6 is the skin depth of the metal and,& is given b

‘,=[k2-(9’r
where k is the free-space wavenumber.

The amplitude coupling coefficient is

Schelkunoff’s normal mode theory [10].

coupled equations are written in terms of

voltage and current. We then rewrite them

(5)

derived from

The resulting

an equivalent

in the form of

forwa~d- and backward-traveling waves, Neglecting back-

ward waves, the amplitude coupling coefficient is ob-

tained as

K,rI = ‘K(–1)‘+’[WL)l’2 + W%)’”]: ~ . (6)~’ — v’

In order to evaluate the power coupling coefhcient h,p

from (6), it is necessary to calculate an ensemble average

of d~(.z) /d.z. The assumed Gaussian autocorrelation enables

us to calculate it in the closed form. Its derivation is

shown in the Appendix. The result is given by

(df(.z) df(z – U) = _4@2D d

) [

exp [– (u/D)’]

ck dz 8 (D2) 1D“

(7)

Using (6) and (7), we can write the power coupling co-

efficient in the following form (see Appendix):

h,, =
{ }
A [(&/&)”2 + (iL/&J “212~2 — V2

Z2D
“~ (8, – &)2+/2 exp ~–[iD(& – 8J 12}. (8)

Following Marcuse [11], we can calculate the steady-

state attenuation constants a(i) and eigenvectors BP(iJ

from (2), (4), and (8). The term a(l) represents the

lowest order attenuation constant of the coupled system.

Hence a sufficiently long waveguide distributes the power
B,(l) to the mode ~ (v = 1,2,... ,N) , and the coupled

dominant wave is attenuated at the rate of 0.

Fig, 2 shows the normalized attenuation constants a@a

and c@a as functions of D/a. The solid lines show the

case with N = 40, and the dot–dash line shows the case

with N = 20; the broken lines depict a(’)a. In this paper

we assume that the metal is silver whose conductivity is

6.139 X 104 mho/mm. It is apparent from (8) that h,.

vanishes when D/a becomes very large or very small, as

in optical waveguides [11]. However, a, is independent

of D/a. Hence each eigenvalue derived from the deter-

minant of the coupled system approaches a, when D/a

becomes very large or very small. The lowest eigenvalue
~(1) ultimately coincides with al of (4). Furthermore a

large &/a gives a large eigenvalue. As the mode number

increases, the maxima of eigenvalues move to the points

with small correlation distances. This shows that the

eigenvalue is determined with the correlation distance in

relation to the guide wavelength.

In optical waveguides, av depends

!6’
I I I I I 4

on D/a. For very

10“” ,,, [ , I I L1
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Norma lized correlation distonce-D/o

Fig. 2. The first and second eigenvalues (i = 1,2) obtained from
the coupled power equations (2). The fist eigenvalue shows the
steady-state attenuation of the coupled system in a sufficiently
long waveguide. The parameters N and ~/a sre the largest mode
number and the normalized rms deviation, respectively.
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small D/a, a, is proportional to D/a, and, for very large

D/a, it is proportional to exp { – [*D (f% – kJ ]2) where

k is the propagation constant in the surrounding medium

of the guide [11]. Thus a. also vanishes when D/a be-

comes very large or very small. This does affect the

power distribution in optical waveguides. For large D/a,

the power tends to distribute evenly among the modes.
The power distribution of random metal waveguides is

different from that of the optical waveguides. Fig. 3

shows the steady-state power distribution for N = 40 as

a function of mode number v. The normalized rms devia-

tion ti/a is assumed to be 0.001. Contrary to the optical

waveguides, the most power resides in the dominant

mode even when D/a is very large. One could argue that

the assumed 6/a is too small to cause enough mode cou-

pling. However, it is characteristic of random metal

waveguides that several lower order modes carry most

of the power no matter what the correlation distance is

assumed to be. It is indeed verified with Fig. 4, where

&/a is assumed to be 0.01. This gives a large loss penalty

as seen from Fig. 2.

0

[“’’’’’’’’’’’’’”1

Mode number- Y’

Fig. 3. The first eigenvector obtained from (2). B,(ll shows the
power in mode v in a sufficiently long waveguide. The deviation
zr/a is assumed to be 0.001.
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Fig. 4. The power distribution as functions of mode number V,
where F/a is assumed to be 0.01.

One question comes to mind though. Marcuse has

shown that if the loss dHference between a pair of modes

is larger than the coupling coefficient, the pulsewidth in-

creases with increasing coupling strength [8]. Hence the

mode mixing is useful for reducing the pulse spreading in

the case that the coupling strength is larger than the loss

difference. In metal waveguides, it is also possible to re-

duce the pulse spreading by mode mixing. It has been

shown that a, is independent of D/a while h.P depends

on D/a. Hence we can make h,P either large or small com-

pared to the difference between a, and a. with the suit-

able choice of D/a or ti/a. The result on the pulse spread-

ing will be shown later.

Fig. 5 shows how the steady-state power distribution

is attained by changing the guide length. It is shown that

if the normalized length z/a is 105 = 10, we get the

steady-state distribution with equal modal power excita-

tion at z = O.

B. Pulse Spreading

The second-order perturbation solution of (2) enables

us to calculate the puke spreacling. If a sufficiently narrow

puke is transmitted, its spreading is calculated from [12]

t = 4 (a@L) 1/2 (9)

where aq(l~ is the second-order eigenvalue of the time-

dependent system. Fig. 6 shows the pulsewidth as a func-

tion of D/a. It is normalized by (a) 112so that the width

at the distance L is obtained from the ordinate value

times (L/a) 112.The solid lines show the case of N = 40,

and the broken line shows N = 20. For small D/a, the

width is also small because of the small power coupling.

It increases with increasing D/a. This coincides with

Marcuse’s theory for the coupling strength that is smaller

than the loss difference. The width then reaches the max-

imum and decreases with increasing D/a. This also coin-

cides with his theory. This is because, as stated before,

h,. depends on D/a while a, is independent of D/a. This

region thus corresponds to the case in which the coupling

strength is larger than the loss difference. Hence mode
mixing is indeed useful for reducing the pulse spreading

in random metal waveguides. After reaching the minimum

point, the width increases with increasing D/a. This again

shows the region for the coupling strength that is smaller

:Zm= -30
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Fig. 5. The power distribution as functions of mode number V,
where the normalized guide length z/u is taken as a parameter.
The solid lines indicate D/a = 0.01 and the broken lines indicate
D/u = 1.0. Therms deviation is 0.001.
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Fig. 6, The normalized second-order solution of the time-dependent
coupled power equations. The pulsewidth at the distance L is
obtained by multiplying the ordinate with (L/a) liz, where a is
the plate separation.

than the loss difference. For very large D/a, the eigen-

value is split into the attenuation constant of each mode.

Therefore, the pukewidth should decrease with very large

D/a. However, as he claims [8], Marcuse’s theory does

not seem to apply to this case.

We conclude this section after showing an example. We

assume the frequency is 500 GHz and guide width is

12.2 mm. Forty modes propagate in this guide. From

Fig. 2, the steady-state attenuation becomes 1.7 dB/km

with 1.2-mm correlation distance and 12-,um-rms devia-

tion. Since the uncoupled dominant mode has a loss of

0.4 dB/km, the loss penalty is about 1.3 dB/km. Fig. 6

shows that the pulse rate in this case is 3.6 Gbit/s per

square root of kilometer. Hence a few hundred megabits/

second can be transmitted over several kilometers with

small loss penalty,

III. MODE CONVERSIONS DUE TO CIRCULAR

BENDS

One of the important considerations for metal wave-

guides is mode conversions due to bends. Bends cause

systematic coupling in a well-fabricated waveguide,l and,

in certain cases, they result in complete power exchange

between modes. For example, the TEM modes in a circular

waveguide are systematically converted to the TM1.

modes in a circular bend. In random waveguides, the

systematic mode conversion. is not of prime importance

if the random coupling coefficient is much larger than

the systematic one. This is because the constant buildup

of higher modes is interrupted by the larger random cou-

pling. This is perhaps the most important aspect of the

1The term “systematic coupling” is used to distinguish it from
random coupling. Examples are distributed directional couplers and
mode transducers.

random waveguides. Bends due to route, conduit condi-

tion, etc., are unavoidable in a long transmission line.

Random waveguides may circumvent this difficulty, i.e.,

suffering from a large loss penalty.

Mode conversions due to circular bends are again cal-

culated from the normal mode theory. The random and

systematic coupling coefficients are obtained as

1‘f(’) (8V+ 8,)K,=ppP ---

(lo)

where pp~ is a constant and r is a bending radius. Hence, if

(11)

the systematic coupling may be negligibly small. It has

been shown that dj(z) /dz can be replaced by j(& –

&) f(z), as far as the coupling is concerned [13]. The pre-
ceding equation then yields

()

0.0716 a ~
~>>— – (12)
a ~2—v2 ~

where $(z) was replaced by 2112&, Equation (12) shows

that a minimum bending radius of, say, 1 m is sufficient

to preclude the systematic mode conversion if p # v, for

the example given in the previous section. If p = v, it is

not possible to choose F/a that satisfies (12). Therefore,
it is important to introduce in random waveguides some

means that can split the propagation constants of degen-

erate modes.

IV. CONCLUSION

We have considered the feasibilities of metallic wave-

guides with random imperfections. The random imperfec-

tions cause mode conversions among various modes in

random fashion. The power distribution and the attenua-

tion constants of the coupled system are calculated from

the coupled power equations developed by Marcuse. The

pulse spreading is derived from the second-order perturba-

tion solution to the time-dependent coupled system.

In random metal waveguides, we have two regions that

distinguish mode mixing ~one is the case where the pulse-

width increases with increasing coupling strength. The

other is the case where the width decreases with increas-

ing coupling strength. We thus have a minimum pulse

spreading in relation to the correlation distance of ran-

dom walls.

The systematic coupling coefficient of circular bends is

calculated and compared to the random coupling coeffi-

cient. Because it is possible to choose the random coupling

coefficient to be much larger than the systematic one,
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bending losses are not of prime importance in the random

waveguides. This is perhaps the most important point of
{

] lc,p p = –KL
}

[(9./s, )’/2+ (@./@v)’/’l2:;. (21)
the random waveguides for long-distance transmission ap-

~2 — *2

placations.
Using (6) in the text, we can calculate the integral as

APPENDIX follows :

If a random variable f (z) is stationary and ergodic, its

ensemble average is calculated from the following for- -4z,D[:T&p’-:’D’”)

mula [14]:

.exp [o”(P, — AJU] du

R(u) = h A /L’2 f(.z)f(z – u) dz.
~w L -L12

(13)
d

= – 452D —

Using the Fourier transform F(u) off (z), we can rewrite
8 (D2)

(13) ‘as follows:

{f

lm
m 27r ] F’(O) ]’ exp [— (u/D)2 + j(~, – &)u] CZU

R(u) = / L exp ( —jou) du (14) “E_. }
—m

where the mathematically difficult limiting process on L a
= –4@2D .—

[

=1,2Deexp ~– [~D(@p – p,) ]2)

is implied [14]. The inverse transform of (14) yields 8 (D’) D 1

If R(u) is given by a Gaussian function (1) in the text,
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Now, based on the assumed random process, we can

write

(df(z) df(z – u)
v(u) = ---&- dz

)

J
L/2 df(z) df(z – ‘) & (17)

= lim —
>. -L\2 dz dz “

Because F’(u) is the Fourier transform off(z), we have

df(z) _ -

/dz _.
joW(a) exp ( joz) dz. (18)

Substitution of (18) into (17) yields

m 27r6J2] F(a) 1’
v(u) = / L exp ( —j...w) du. (19)

—m

From (16) and (19), (6) in the text is derived.

We next show the derivation of (7). The power cou-

pling coefficient is written as

m clf(.z)df(z – u)Hh,p = I k,. p —
—m dz dz )

“exp [j(L?, – &)w] du (20)

where
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